Determining Optimum Structure for Artificial Neural Networks

نویسنده

  • Taskin Kavzoglu
چکیده

Artificial Neural Networks (ANNs) have attracted increasing attention from researchers in many fields, including economics, medicine and computer processing, and have been used to solve a wide range of problems. In remote sensing research, ANN classifiers have been used for many investigations such as land cover mapping, image compression, geological mapping, and meteorological image classification, and have generally proved to be more powerful than conventional statistical techniques, especially when the training data are not normally distributed. The use of ANNs requires some critical decisions on the part of the user, which may affect the accuracy of the resulting classification. In this study, determination of the optimum network structure, which is one of the most important attributes of a network, is investigated. The structure of the network has a direct effect on training time and classification accuracy. Although there is some discussion in the literature of the impact of network structure on the performance of the network, there is no certain method or approach to determine the best structure. Investigations of the relationship between the network structure and the accuracy of the classification are reported here, using a MATLAB tool-kit to take the advantage of scientific visualisation. The effect of the composition of the training data on network structure is also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

Prediction of Kinematic Viscosity of Petroleum Fractions Using Artificial Neural Networks

In this work, artificial neural network (ANN) was utilized to develop a new model for the prediction of the kinematic viscosity of petroleum fractions. This model was generated as a function of temperature (T), normal boiling point temperature (Tb), and specific gravity (S). In order to develop the new model, different architectures of feed-forward type were examined. Finally, the optimum struc...

متن کامل

Optimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network

A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...

متن کامل

Determining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)

Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting  changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...

متن کامل

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999